

CRISIS IMPACT OVERVIEW

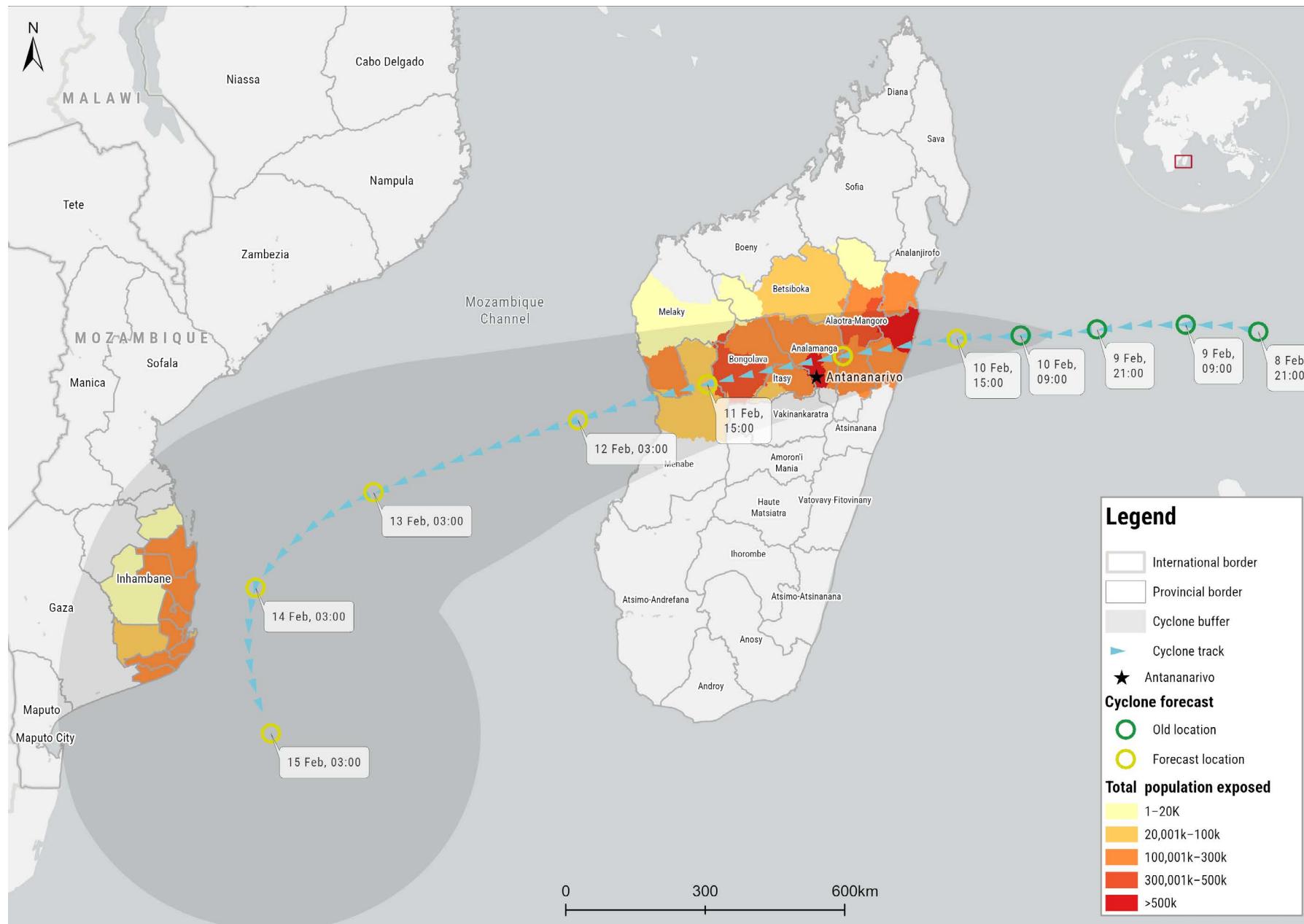
Tropical Cyclone Gezani made landfall in Madagascar on 11 February 2026 as a Category 3 tropical cyclone, hitting the Ankazobe district of the Analamanga region. The cyclone has generated sustained winds of up to 180km/h, gusts estimated at up to 250km/h, intense rainfall, and coastal flooding (AJ 11/02/2026; Meteo Madagascar accessed 13/02/2026; Madagascar Tribune 11/02/2026). Initial exposure estimates indicate that at least 1.8 million people may be exposed to the cyclone's impacts by 15 February. The regions expected to experience the most severe impacts include Alaotra Mangoro, Analamanga, Analanjirofo, Atsinanana, Betsiboka, Bongolava, Itasy, Melaky, and Menabe (WFP accessed 10/02/2026; GDACS accessed 10/02/2026; Meteo Madagascar accessed 11/02/2026). On 10 February, red alerts (signally imminent danger) were issued for Alaotra Mangoro, Analamanga, Analanjirofo, Atsinanana, and Betsiboka regions in the country's northeast (Meteo Madagascar accessed 11/02/2026). Highly populated areas, including Ambatondrazaka, Antananarivo, and Toamasina are among those at highest risk (OCHA 10/02/2026).

By 12 February, Cyclone Gezani had affected approximately 250,000 people, displaced 6,800, and resulted in 31 reported fatalities. According to initial estimates from the National Office for Disaster Risk Management (BNGRC), the cyclone has caused extensive destruction in the Atsinanana region, particularly in Toamasina and its surrounding areas, where up to 90% of infrastructure and housing has been destroyed (11,000 houses flooded and over 54,000 destroyed) (L'Express 12/02/2026 a and 12/02/2026 b; BNGRC 11/02/2026).

Madagascar had also just been hit by Tropical Cyclone Fytia, which made landfall on 31 January 2026, affecting 200,000 people in 35 districts across nine regions: Alaotra Mangoro, Analamanga, Atsinanana, Betsiboka, Boeny, Itasy, Melaky, Sofia, and Vakinankaratra. Cyclone Fytia brought moderate to heavy rainfall across Analamalanga, western Betsiboka, Boeny, and the northern Melaky regions, triggering widespread flooding. By 5 February, Fytia had resulted in the displacement of 31,480 people and damaged housing, infrastructure, and agricultural land, further constraining recovery capacity in affected districts (UNICEF 05/02/2026; OCHA 10/02/2026).

The cyclone season in Madagascar runs from December–April. During this period, the country experiences cyclones with strong winds, heavy rainfall, and storm surges causing flooding, landslides, displacement, cropland and livestock losses, and destruction of critical infrastructure (Duke Lemur Center 11/2021; FAO 17/03/2023).

Tropical cyclones are Madagascar's primary climate hazard, with up to four events occurring annually, mainly affecting the northern and eastern coasts, with winds regularly exceeding 200km/h (WB 07/09/2024; Rakotoarimanana et al. 03/2022).


EXPECTED IMPACT

Intensity and exposure

By 12 February, Gezani was expected to regain strength to a Category 2 cyclone as it crossed the Mozambique Channel, where very warm sea surface temperatures, high ocean heat content, and relatively low vertical wind shear provide favourable conditions for renewed intensification. The system is forecast to move toward southern Mozambique, bringing heavy rainfall and winds of up to 175km/h around 14 February, particularly across coastal areas of Inhambane province, including Inhambane city. From 15 February, forecast models indicate a potential south-eastward shift in trajectory, which could expose southwest coastal areas of Madagascar's Atsimo-Andrefana region to flooding and wind damage (Zoom Earth accessed 12/02/2026; TSR accessed 12/02/2026).

Linked to the cyclone's path and local weather systems, as well as the influence of La Niña – which is still present and typically enhances precipitation and cyclonic activity in the Southern Africa region – precipitation will remain high across large areas of Madagascar, Malawi, central and northern Mozambique, northeast South Africa, Tanzania, and Zambia. This will likely trigger more riverine, flash, and urban flooding, potentially compounding the devastating impact of Cyclone Gezani (Tropical Tids Bits accessed 12/02/2026; NOAA 09/02/2026).

MAP 1. CYCLONE GEZANI'S PROJECTED PATH THROUGH 15 FEBRUARY

Source: ACAPS using data from WFP (accessed 12/02/2026)

The table below presents the projected number of people expected to be exposed to Cyclone Gezani in the near term.

Table 1. Madagascan population exposed to Tropical Cyclone Gezani through 15 February

REGIONS	POPULATION			TOTAL
	60 KM/H	90 KM/H	120 KM/H	
Alaotra Mangoro	384,004	161,528	259,211	804,743
Analamanga	321,582	105,675	61,964	489,221
Analanjirofo	266,308	131,056	20,670	418,034
Atsinanana	84,315	63,066	621,785	769,166
Betsiboka	51,383	3,387	3,233	58,003
Bongolava	339,629	41,229		380,858
Itasy	59			59
Melaky	144,957			144,957
Menabe	233,244			233,244
Total	1,825,481	505,941	966,863	3,298,285

Source: ACAPS using data from WFP (unpublished)

PRE-CYCLONE HUMANITARIAN OVERVIEW

Shelter

In Madagascar, shelter typologies vary significantly by region (coastal and inland), influencing exposure to cyclone impacts. In Antananarivo, around 60% of residents live in permanent brick and concrete housing, although overcrowding and construction quality gaps reduce resilience. The remaining 40% live in informal settlements constructed from wood and thatch, often located in flood-prone low-lying areas (UN-Habitat 07/2023; Nsabimana et al. 05/10/2023; GCA 02/11/2022). Although the capital is inland, heavy rainfall associated with cyclones regularly triggers riverine overflow and urban flooding, resulting in recurrent displacement and damage to housing and basic infrastructure (Disaster Charter 17/01/2020). In coastal cities such as Toamasina, around 80% of households live in traditional Ravenala palm and timber structures that are highly susceptible to high winds and storm surge (Taleb et al. 15/08/2023). During Intense Tropical Cyclone Batsirai (Category

3/4 equivalent at landfall, 2022) and Cyclone Freddy (Category 3 at landfall, 2023), nearly 500,000 people were affected nationally, with at least 4,500 houses damaged and over 11,000 people displaced in hard-hit urban areas (Shelter Cluster 2023). In 2018, Cyclone Ava displaced more than 10,000 people in Toamasina and Antananarivo following severe flooding (WOD 25/01/2022; IFRC 20/04/2020).

Given the structural vulnerability of shelters in the country, Cyclone Gezani is likely to cause significant shelter damage – particularly in coastal districts where traditional housing predominates – and secondary flooding impacts in inland urban areas such as Antananarivo (Taleb et al. 15/08/2023). High winds may result in roof loss and structural collapse in lightweight dwellings, while intense rainfall could trigger riverine flooding, landslides, and displacement into temporary shelters, compounding pre-existing shelter needs and recovery gaps from previous cyclones.

Health and WASH

Madagascar's limited health system capacity constrains the ability of affected populations to cope with cyclone-related shocks, particularly in provinces frequently exposed to landfalling systems such as Toamasina (Atsinanana) and Antananarivo (Analamanga). More than 60% of the population lives over 5km from the nearest health facility, with geographic barriers, weak transport networks, and seasonal inaccessibility further limiting access (Evans et al. 22/07/2025; WB 07/09/2024). In 2022, health workforce capacity remained below regional averages, with approximately 1.7 doctors per 10,000 people compared to the African regional average of 2.6 per 10,000 (WHO 30/04/2025). While Antananarivo, as the capital, generally has better infrastructure and more specialists than Toamasina, both cities experience significant gaps in trained staff, essential equipment, diagnostics, medicines, and equitable access, with residents often needing to travel long distances or pay out-of-pocket for advanced or reliable care (Rabearison et al. 20/03/2025; Moov 28/08/2023).

While comprehensive, region-specific data for Alaotra Mangoro, Analamanga, Analanjirofo, Atsinanana, Betsiboka, Bongolava, Itasy, Melaky, and Menabe are not routinely disaggregated in publicly available weekly bulletins, malaria remains Madagascar's most significant endemic vector-borne disease. National caseloads and mortality have risen substantially in recent years (malaria cases increased 132% between 2020–2023, with 51 deaths per 100,000 people – a mortality rate that exceeds the regional average by 11%), driven by climatic conditions, weak infrastructure, and limited healthcare access (Rajaofera et al. 05/08/2025; GAVI 18/07/2025; CDC 15/05/2024).

Since 30 December 2025, Madagascar has been experiencing an outbreak of Mpox. By 5 February 2026, a total of 688 cases had been reported nationwide, including in Analamanga (35 confirmed and ten suspected cases), Betsiboka (one confirmed and five suspected cases), and Melaky (six confirmed and one suspected case) (UNICEF 05/02/2026). Population displacement is likely to increase the risk of further Mpox transmission, as displaced households often shelter in overcrowded conditions that facilitate close physical contact, while simultaneous disruption to healthcare services, surveillance systems, and case monitoring reduces timely detection, isolation, contact tracing, and treatment in affected areas.

In Madagascar, there are substantial gaps in access to essential water and sanitation services, a problem further compounded by the substandard quality of available services. By 2022, only 54.4% of the population had access to basic water services and only 12.3% had access to basic sanitation services (WB 17/06/2022). Access gaps are aggravated during cyclones, as flooding damages water supply infrastructure, contaminates rivers and wells, and disrupts sanitation services (UNICEF 09/02/2025). Flooding-induced displacement into temporary and often overcrowded shelters, where access to adequate water, sanitation, and hygiene services is limited, may further facilitate the spread of disease as well as restrict women and girls' access to adequate menstrual hygiene management provision.

Food security and livelihoods

The cyclone's impacts will overlap with the lean season (March–April) in central and eastern Madagascar, when households have already depleted most of their food stocks (ACAPS accessed 11/02/2026). Agricultural households in northern and central regions have recently planted rice for their primary annual food supply, with harvest planned to start in April (IPC 29/01/2026). Damage at this stage would directly affect subsistence production and income generation in provinces including Alaotra Mangoro, Analamanga, Analanjirofo, Atsinanana, and Bongolava, where agriculture is the dominant livelihood and over 85% of households rely on the sector for income (FEWS NET 10/2024). With the majority of the population reliant on agriculture as their primary source of income, damage to agricultural crops is likely to limit livelihood opportunities and directly affect communities' ability to secure income, leaving them less able to meet basic food needs and increasing overall vulnerability to food insecurity (FEWS NET 10/2024; WB 28/11/2023). Similar timing during the 2022 cyclone season, when Category 4 Cyclone Batsirai struck, resulted in severe agricultural losses, with more than 60% of cultivated land affected in afflicted districts and food crop production losses estimated at approximately USD 61 million, including extensive damage to rice fields in eastern regions such as Atsinanana and Analanjirofo (FAO 06/2022).

In Alaotra Mangoro, the country's principal rice-producing basin, previous cyclones have inundated thousands of hectares of lowland paddy fields, reduced national rice output, and increased dependence on market purchases (WB 30/03/2023; Adaptation Fund accessed 13/02/2026). Flood-related crop destruction and road damage from Cyclone Fytia has also disrupted supply chains into Analamanga, where markets depend heavily on inflows from surrounding agricultural regions (RFI 02/02/2026). These shocks are likely to translate into rising food prices and deteriorating food security outcomes. For example, the cyclone is likely to worsen food insecurity in the Vavatenina and Maroantsetra districts of the Analanjirofo region, where 20% of the assessed population is already projected to face Stressed (IPC Phase 2) levels of food insecurity between December 2025 and April 2026 as a result of the lean season (IPC 29/01/2026). The cyclone's impact during the crop-growing season is likely to aggravate these conditions through direct crop losses, damage to household food stocks, reduced agricultural labour opportunities, and temporary market isolation as a result of infrastructure damage, further weakening households' access to food and deepening food insecurity across affected provinces. Damage to rice fields is expected to drive up demand for cheaper imported rice. While this may temporarily improve affordability, it will also reduce demand for locally produced rice, undermining the income and livelihoods of farming families and agricultural labourers dependent on domestic production (IPC 29/01/2026). Cyclone-linked flooding is also likely to damage trading infrastructure and fishery assets in coastal areas, interrupting local commerce and reducing earnings in markets essential to household incomes, particularly in Atsinanana, where the port and informal markets are significant employment hubs (The Conversation 08/04/2018).

In Madagascar's Alaotra Mangoro, Analamanga, Analanjirofo, Atsinanana, and Bongolava regions, livelihoods are heavily dependent on agriculture, small trade, and natural resource-based activities, making these regions highly vulnerable to cyclonic shocks. Rice and maize cultivation dominate in Alaotra Mangoro, the country's primary food-producing basin, while coastal provinces such as Analamanga, Analanjirofo, and Atsinanana also depend on cash crops, fishing, and informal commerce. In Bongolava, subsistence farming and smallholder cash crops are key income sources (OCHA 24/01/2022; FAO 05/06/2024; JICA 01/02/2023; FEWS NET 30/11/2017). In urban-peri-urban zones, such as Analamanga, cyclones disrupt supply chains, reduce informal sector incomes (which account for a large share of employment), and drive-up food prices in local markets, further eroding purchasing power. In all these regions, repeated exposure to cyclones limits recovery capacity, deepens poverty, and weakens resilience by damaging productive assets, increasing food insecurity, and shrinking livelihood opportunities, particularly for smallholder farmers and informal workers who may lack insurance or social protection (CJC 02/04/2023; Borgen Project 14/08/2025).

Protection

During previous cyclone emergencies in Madagascar, protection risks escalated as lifesaving services and safe environments were disrupted, increasing risks across affected populations (UNICEF 31/07/2025). Cyclones Batsirai and Emnati in February 2022 displaced tens of thousands of people and damaged schools, health facilities, and critical infrastructure, significantly interrupting access to formal protection systems and community support networks. People forced into ad-hoc shelters faced heightened risks of exploitation and loss of social safety nets as access to case management and psychosocial support was limited by impassable roads and damaged service centres (ACF 08/12/2023; UNICEF 09/02/2022; OCHA 18/06/2025). In 2023, Cyclone Cheneso caused dozens of deaths and mass displacement in January, followed by Cyclone Freddy in February, exposing similar protection gaps: overcrowded communal shelters lacking gender-segregated sanitation and adequate lighting contributed to increased risks of gender-based violence, while stretched humanitarian responders had to scale up child protection and mental health and psychosocial support services for displaced children and caregivers (UNFPA 19/01/2023; UNICEF 20/04/2023). More than two years after the 2022 cyclones, humanitarian organisations reported continuing accessibility challenges in the southeast: remote communities remained cut off from formal protection systems as a result of damaged roads and inaccessible health and social services, prolonging risks of neglect, exclusion, and harm (ACF 08/12/2023; FEWS NET 31/03/2022).

Social and cultural norms reinforce gender-based discrimination, restricting women's mobility, decision-making power, and access to resources (AI 2024). This is likely to reduce affected women's ability to recover from cyclone-related losses, including livelihood opportunities, increasing their risk of resorting to coping strategies with potential harmful effects to meet their basic needs. Such strategies include engaging in survival sex or exploitative labour, entering or remaining in unsafe relationships for financial security, withdrawing children from school to support household income, or care work.

Children experiencing cyclone-induced displacement could be separated from their main caregivers, heightening their risk of exposure to violence, abuse, and exploitation, including trafficking. Children on the move could also lack identity documents, preventing them from accessing critical services, including education, healthcare, and safe spaces (UNICEF 05/02/2025).

Emergency response

The Government of Madagascar, through the BNGRC, has been leading the response to Tropical Cyclone Fytia. On 3 February, the BNGRC and OCHA, in collaboration with UN agencies, the Red Cross, and other NGOs, conducted an aerial assessment of five districts in the Boeny region to assess Fytia's impact. This aerial assessment was intended to supplement ground assessments by prioritising areas for intervention and informing strategic planning for follow-up assistance and community recovery efforts (OCHA 06/02/2026; UNICEF 05/02/2026).

The UN Central Emergency Response Fund has allocated USD 3 million to six UN agencies in Madagascar for the response to Cyclone Gezani. This funding is intended to help deliver support to more than 93,000 people exposed to Gezani's most severe impacts (OCHA 10/02/2026). The targeted population represents around 1% of the people likely to be affected by the cyclone.

Madagascar has experienced a sharp reduction in international humanitarian assistance in recent years, largely driven by US funding cuts. In 2025, overall aid to the country fell by nearly 70% compared to the previous year, with US contributions dropping from about USD 78 million to less than USD 6 million. This contraction has directly undermined the operational capacity of both community and international responders. In the Grand Sud alone, approximately 15 community-level NGOs have shut down, while major responders such as Action Against Hunger and the WFP have scaled back their presence. The funding shortfall has made it increasingly difficult to plan and sustain interventions, with OCHA reporting challenges maintaining field staff (The Independent 04/01/2026; AACF 13/06/2025; WFP 27/03/2025).

The Regional Emergency Preparedness and Access to Inclusive Recovery Program announced that it will provide essential funding to support the Government of Madagascar in mobilising relief efforts for the floods affecting the country since December 2025 (ARC 30/01/2026). By 12 February, it remained unclear what additional financial support would be made available to address the impacts of cyclones Fytia and Gezani.

Grappling with an economic crisis, the Government has recently intensified austerity measures, a move that is likely to weaken the country's ability to respond effectively to crises (WADR 22/10/2025; APA News 21/10/2025). Madagascar's Disaster Risk Management system is already severely underfunded, with authorities struggling to secure adequate financing, staffing, and logistical resources to maintain readiness or implement preparedness and risk reduction strategies. Data systems remain fragmented, and although tools for risk mapping and early warning exist, they are not fully integrated or consistently updated, limiting evidence-based decision-making before and during emergencies, including pre-crisis evacuation efforts (PDC 24/09/2025).

Humanitarian access and supply chain vulnerability

Poor maintenance and erosion has made a significant portion of the Madagascan road network unsafe for use, making it one of the least developed countries in terms of road quality (UNEP accessed 11/02/2026; Logistics Cluster accessed 11/02/2026). The RN7 highway, a critical north–south artery linking Antananarivo to southern regions, represents a single-point land transport dependency (Why Africa 12/12/2024). Flooding or bridge washouts in the highlands will affect access to Atsimo-Andrefana and surrounding drought-affected southern regions, where communities already face Crisis (IPC Phase 3) levels of food insecurity. Such isolation will delay humanitarian assistance, disrupt commercial flows, and intensify food access constraints beyond cyclone-affected regions (IPC 29/01/2026; UNDP 24/07/2025).

Cyclone Gezani is also likely to disrupt operations at Toamasina port, which handles around 75% of Madagascar's freight. Such a disruption will significantly constrain the humanitarian response, as Toamasina is the only port equipped to receive large container vessels (Logistics Cluster accessed 11/02/2026; Marinellink accessed 11/02/2026; GDACS accessed 11/02/2026). If port operations are suspended as a result of wind damage, flooding, or debris obstruction, national fuel distribution, food supply chains, and aid supplies will be immediately constrained. Given the limited capacity of maritime infrastructure, even a short-term suspension has the potential to disrupt supply chains and result in rapid market shortages and price volatility, particularly in urban centres reliant on imported commodities (Marinellink accessed 11/02/2026; GDACS accessed 11/02/2026). Under such circumstances, humanitarian organisations will likely attempt to reroute supplies through airports, even though this option offers far less cargo capacity and higher costs, making it an inadequate substitute for sustaining largescale relief operations. By 11 February, Antananarivo international airport had reported a progressive resumption of flight schedules following the lifting of the red alert for the Analamanga region (Madagascar Airlines Facebook 11/02/2026).

COMPOUNDING/AGGRAVATING FACTORS

Rainfall on saturated catchments

Gezani's rainfall is likely to trigger flooding and landslides because soils and river systems remain saturated from Cyclone Fytia, significantly reducing absorption capacity and increasing rapid runoff (OCHA 06/02/2026 and 10/02/2026). Cyclone Gezani made landfall in Madagascar only 11 days after Fytia, leaving limited hydrological recovery time (OCHA 10/02/2026; BNGRC 10/02/2026; WFP accessed 10/02/2026; GDACS accessed 10/02/2026). In districts

such as Soalala and Mitsinjo in the Boeny region, already elevated river levels in the Betsiboka, Mahajamba, and Mahavavy rivers and waterlogged soils mean that additional rainfall will quickly convert into high-velocity surface runoff instead of infiltrating the ground, increasing the likelihood of flash flooding, river overflow, and slope instability along the eastern escarpment (BNGRC 02/02/2026; OCHA 06/02/2026).

In downstream urban areas, particularly Antananarivo, saturated upstream catchments will intensify runoff into constrained drainage systems, heightening the risk of sudden and widespread urban flooding. As such, the cumulative effect of successive cyclones mean that even moderate rainfall accumulations have the potential to produce severe impacts (BNGRC 02/02/2026; OCHA 06/02/2026).

Analamanga dam capacity risk

As the Analamanga regional dam (in the Sisaony/Antanifotsy area) is already partially breached and at risk of full collapse following Fytia's heavy rains, extreme rainfall from Gezani greatly increases the likelihood of catastrophic downstream flooding in the Analamanga floodplain, where thousands of homes and farmlands are already under threat (Madagasikara accessed 11/02/2026; RFI 02/02/2026; Kenya Star 28/01/2026).

Heavy rains during Cyclone Fytia also caused a partial rupture of a hydro-agricultural dam in the Analamanga region near Antananarivo, washing away sections of its retaining wall and endangering over 5,000 homes and nearly 2,000 hectares of rice fields if the structure should fail completely under pressure (Kenya Star 28/01/2026). Given that nearly 1,500 homes in hilly and low-lying neighbourhoods are already identified as at high risk of landslides and slope instability from persistent rainfall and soil erosion, the added stress of extreme precipitation from Gezani further elevates structural and flood risk (Madagasikara accessed 11/02/2026).

Under these conditions, emergency water releases or a full breach could rapidly inundate downstream communities, compound direct cyclone flooding, and trigger localised flash floods. With large areas of Antananarivo's floodplain densely populated and drainage infrastructure strained, even moderate dam overflow or failure would exponentially increase displacement, infrastructure damage, and secondary public health impacts during the peak of the cyclone event (Madagasikara accessed 11/02/2026; Kenya Star 28/01/2026).